Machine Learning Based Single-Frame Super-Resolution Processing for Lensless Blood Cell Counting

نویسندگان

  • Xiwei Huang
  • Yu Jiang
  • Xu Liu
  • Hang Xu
  • Zhi Han
  • Hailong Rong
  • Haiping Yang
  • Mei Yan
  • Hao Yu
چکیده

A lensless blood cell counting system integrating microfluidic channel and a complementary metal oxide semiconductor (CMOS) image sensor is a promising technique to miniaturize the conventional optical lens based imaging system for point-of-care testing (POCT). However, such a system has limited resolution, making it imperative to improve resolution from the system-level using super-resolution (SR) processing. Yet, how to improve resolution towards better cell detection and recognition with low cost of processing resources and without degrading system throughput is still a challenge. In this article, two machine learning based single-frame SR processing types are proposed and compared for lensless blood cell counting, namely the Extreme Learning Machine based SR (ELMSR) and Convolutional Neural Network based SR (CNNSR). Moreover, lensless blood cell counting prototypes using commercial CMOS image sensors and custom designed backside-illuminated CMOS image sensors are demonstrated with ELMSR and CNNSR. When one captured low-resolution lensless cell image is input, an improved high-resolution cell image will be output. The experimental results show that the cell resolution is improved by 4×, and CNNSR has 9.5% improvement over the ELMSR on resolution enhancing performance. The cell counting results also match well with a commercial flow cytometer. Such ELMSR and CNNSR therefore have the potential for efficient resolution improvement in lensless blood cell counting systems towards POCT applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Contact-Imaging Based Microfluidic Cytometer with Machine-Learning for Single-Frame Super-Resolution Processing

Lensless microfluidic imaging with super-resolution processing has become a promising solution to miniaturize the conventional flow cytometer for point-of-care applications. The previous multi-frame super-resolution processing system can improve resolution but has limited cell flow rate and hence low throughput when capturing multiple subpixel-shifted cell images. This paper introduces a single...

متن کامل

Feature dimensionality reduction for example-based image super-resolution

Support vector regression has been proposed in a number of image processing tasks including blind image deconvolution, image denoising and single frame super-resolution. As for other machine learning methods, the training is slow. In this paper, we attempt to address this issue by reducing the feature dimensionality through Principal Component Analysis (PCA). Our single frame supper-resolution ...

متن کامل

Image Super-Resolution Techniques based on Machine Learning: Comparative Review

The task of providing super-resolution is a task, which is mainly formulated in the inverse form and is solved by the method or a set of methods for preserving the finest details of an image by processing one input image or a set of input images of one scene. The image super-resolution is provided due to an increase in the number pixels per unit area in the original sample. Similar methods for ...

متن کامل

Corpus based coreference resolution for Farsi text

"Coreference resolution" or "finding all expressions that refer to the same entity" in a text, is one of the important requirements in natural language processing. Two words are coreference when both refer to a single entity in the text or the real world. So the main task of coreference resolution systems is to identify terms that refer to a unique entity. A coreference resolution tool could be...

متن کامل

Example Based Single-frame Image Super-resolution by Support Vector Regression

 Example Based Single-frame Image Super-resolution by Support Vector Regression Dalong Li, Steven Simske HP Laboratories HPL-2010-157 Support Vector Regression, single-frame image super-resolution, ill-posed problem, example-based, machine learning As many other inverse problems, single-frame image super-resolution is an ill-posed problem. The problem has been approached in the context of mach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016